Developing Hotspot Prime Editors to Enable Therapeutic Correction of Multiple CFTR Mutations in Cystic Fibrosis

prime / The medicine

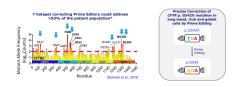
In collaboration with Cystic Fibrosis oundation

Eric Zheng, Dewi Harianto, Sascha Hernandez, Marine Hatit, Doriee Shola, Jun Mao, Katie Holland, Rafaela Mendes, Zihan Zhang, Charitha Guruge, Mallik Putta, Yunchao Gai, Andrea De Erkenez, Vivian Choi, Jeremy Duffield Prime Medicine, Inc. Cambridge, MA, United States.

Abstract

Cystic fibrosis (CF) is a life-threatening, monogenic autosomal recessive disease caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. These mutations result in loss of chloride ion transport across epithelial membranes, leading to mucus accumulation in multiple organs, especially lung and pancreas. The mucus in the lung promotes chronic bacterial infections, inflammation and progressive lung damage, which are the primary causes of mortality in CF patients. Despite significant advancements in therapies such as CFTR modulators, patients that are responsive to the modulators require live-long treatment and more than 15% of CF patients have nonresponsive mutations and are left without treatment. Genetic therapies for CF have been under development using different delivery vehicles, with limited success. There is a significant unmet medical need for a onetime, disease-modifying therapy for these patients. Prime Medicine is developing Prime Editors to durably and precisely correct multiple mutational hotspots with high unmet need and aiming to achieve permanent restoration of CFTR expression under endogenous control and normal CFTR function. These same Hotspot Prime Editors taken together could address >93% of all CF patients.

Comprehensive high throughput screening for Prime Editors led to identification of potent editors to precisely correct prevalent and nonsense CFTR mutations across multiple mutational hotspots including G542X. These Prime Editors demonstrated >60% of precise correction in patient-derived primary Human bronchial epithelial (HBE) cells, and restoration of CFTR expression in HBE cells differentiated air-liquid interface culture. Correction of CFTR mutations also leads to normalization of Cl⁻ current in an electrophysiology assay, indicating a functional rescue of CFTR. We next evaluated our CFTR Prime Editors in vivo in a humanized mouse model with CFTR p.G542X mutation (Cftr CFTR p.G542X/Cftr), To deliver Prime Editing components in vivo, we are developing a lipid nanoparticle (LNP) system formulated with Prime Editor components in the form of RNA (LNP-PE). We also delivered Prime Editors using a dual-AAV system in development. Following single dosing of PE test articles, we observed encouraging editing activity in lung epithelium including epithelial progenitors, prior to in vivo optimizations, indicating this approach has potential to be disease-modifying.

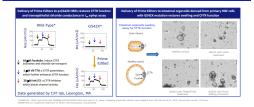

Together, these results highlight that LNP or AAV-delivered Prime Editors have the potential to precisely and efficiently correct the high unmetneed pathogenic mutations causing CF. Prime Editing offers the potential of a safe and effective curative approach for patients impacted by CF.

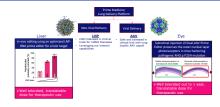
Prime Editing is programmable for both search and replace

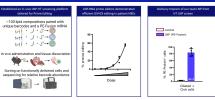
The PE technology utilizes a Prime Editor protein and a Prime Editing guide RNA (pegRNA) to directly write

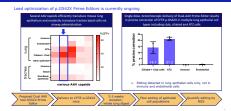
Initial approach: correct prevalent CFTR mutational hotspots by Prime Editors

Prime's approach is to deliver Prime Editors to critical epithelial cells in patient lung for efficacy and durability


Prime Editors correct the CFTR gene to normal resulting in physiological control of CFTR


Highly active CFTR Prime Editors for correcting multiple Cystic Fibrosis mutational hotspots


Restoration of CFTR function in human bronchial epithelial cells and patient-derived intestinal organoids


Viral (AAV) & non-viral (LNP) delivery systems are effective at delivering Prime Editors in vivo

In vivo LNP screen identified Primedesigned LNPs that effectively deliver Prime Editors to lung epithelium

Initial PoC in humanized CFTR p.G542X mice with an unoptimized CFTR Prime Editor delivered by dual AAV using lung trophic capsid

Summary

Prime is developing LNP and AAV systems to deliver Prime Editors to secretory and progenito